
BAM user manual and installation

guide v. 2025.7.27

July 27, 2025

For information about this software, contact Nick Sahinidis at niksah@minlp.com.

Contents

1 Introduction . 1

1.1 Licensing and software requirements . 3

1.2 Installation . 3

2 Algorithms implemented . 3

3 Running BAM . 4

4 Example input file . 5

5 Input file grammar . 5

6 BAM data and options specification statements 6

6.1 Required parameters . 6

6.2 Optional vector parameters . 7

6.3 Optional data specifications . 7

7 BAM output . 9

7.1 BAM screen output . 9

8 Termination conditions and error messages 10

9 Bibliography . 12

1 Introduction

The purpose of BAM (Branch-And-Model) is to solve optimization problems for which the objec-
tive function or constraints are not algebraically available. BAM can be used to optimize a model
defined via a black-box simulator or laboratory experiment. The solver is designed especially for
problems for which the simulator is expensive to run and is therefore imperative to minimize the
number of calls to the black box during the course of the algorithm. BAM has been developed

mailto:niksah@minlp.com

2 BAM user manual and installation guide v. 2025.7.27

having in mind the optimization of complex simulation models, optimization with laboratory
data, and hyperparameter tuning for complex machine learning models.

The class of optimization problems addressed by BAM is often referred to as derivative-free
optimization, black-box optimization, simulation optimization, and data-driven optimization.
Optimization algorithms for this class of problems are classified into local search and global
search algorithms. Local search algorithms improve a current trial solution in its neighborhood
using direct search or model-based methods. Direct search methods propose sample points
for evaluation that form a particular geometry. These algorithms include Nelder-Mead and
generalized pattern search. Model-based search methods use evaluated points to build a typically
linear or quadratic surrogate model and propose sample points that optimize the model. Some
examples are trust-region methods and the implicit filtering method. Global-search methods
incorporate global exploration steps to escape from local optima. These algorithms include
Bayesian optimization, genetic algorithms, and algorithms based on domain partitioning.

Inspired by the success of branch-and-bound algorithms for algebraic optimization, BAM im-
plements a domain partitioning algorithm for data-driven optimization. The algorithm relies
on a box-subdivision algorithm that is guaranteed to converge to a global minimum, even for
problems involving discontinuities, nonconvexities, and integer or categorical variables. BAM’s
unique subdivision scheme allows a flexible partition of the search space and exploits previously
evaluated points. The algorithm approximates the function of interest using a collection of local
surrogate models around each evaluated point. The implementation relies on the use of Au-
tomated Learning of Algebraic MOdels (ALAMO) to generate simple and accurate algebraic
models. ALAMO’s ability to produce sparse models from a large collection of potential basis
functions allows the construction of more complex surrogate models than quadratic ones if neces-
sary. With the model-based search, BAM exploits the local trends of the objective function using
the information from the evaluated points and usually results in fast convergence during solution
refinement. The algorithm relies on the leading global optimization solver BARON to solve its
local surrogate models to global optimality to identify the most promising regions for further
exploitation at every iteration. Compared to other data-driven algorithms, BAM performs a
more effective search, especially for problems with higher dimensions.

BAM can:

• solve optimization problems defined via a simulation or experimental black-box system

• use previously collected data to initialize the search

• call a user-specified function (simulator) to collect measurements

• enforce variable bounds

The problems addressed by the software have long been studied in the fields of optimization,
statistics, design of experiments, and machine learning. Whereas existing techniques from this
literature are routinely used to fit data to local or global models and use these models to guide
the search, the main challenges addressed by the BAM software are in determining where to
run the simulations or experiments, what models to fit, how to optimize these models, when
to use local refinement or global exploration, and how to perform all these tasks in an entirely
automated manner without user intervention.

BAM user manual and installation guide v. 2025.7.27 3

1.1 Licensing and software requirements

The code is available for download at http://minlp.com/bam. The same URL provides infor-
mation about licensing the software.

1.2 Installation

Install BAM and the BAM license file in any directory of your choice and add it to your path.
On Windows, BAM’s installer will take care of these steps for you. On Linux and OSX systems,
unzip the BAM download and place the files it contains in a directory in your path. Users
should not open the license file in an editor as this may invalidate the license in certain operating
systems. For all operating systems, make sure that BAM and the BAM license file are readable
by all intended users on your machine.

For a silent (non-interactive) installation on Windows, download the installer and run it as follows
from the command line:

bam-windows64.exe /SILENT

If an installation log file is additionally desired, it can be generated by the command:

bam-windows64.exe /SILENT /LOG=filename

where filename is the desired name for the log file. In both cases, Windows will still request
permission to run the executable before the silent installer is launched.

2 Algorithms implemented

The BAM algorithm starts with optional user-specified previously evaluated or proposed starting
points, or a space-filling LHS initialization strategy. Each iteration gradually includes additional
evaluated points found by model-based search and volume-based search. There are four main
steps in each iteration:

1. BAM’s unique box subdivision scheme is utilized to partition the search space into a set
of boxes, with each box corresponding to the area of influence of each previously evaluated
point. The subdivision scheme makes use of all previously evaluated points and each box
contains exactly one evaluated point. The algorithm performs a dense search using the
proposed subdivision scheme. Dense sampling is the essential pillar for guaranteeing the
convergence of the algorithm.

2. After the partitioning of the search domain, BAM selects the most promising boxes after
excluding boxes for which a Lipschitzian argument guarantees suboptimality (no Lipschitz
constant is assumed by the algorithm). Boxes that pass this test are used for local surrogate
model construction. This step avoids unnecessary model building and prevents delays by
avoiding searching around non-global basins.

http://minlp.com/bam

4 BAM user manual and installation guide v. 2025.7.27

3. BAM builds a collection of local surrogate models around the evaluated point in each
selected box. Models are fitted using only information from other nearby evaluated points,
requiring no further points to be evaluated. Multiple local surrogate models allow the
behavior of each surrogate function to be simple compared to utilizing a single surrogate
function for the entire feasible domain. In a small neighborhood, the function is assumed
to behave independently for each variable. We use ALAMO for model construction, an
algorithm that is proven to construct simple and accurate models by selecting a small
subset of basis functions from a potentially large group. Building surrogate models exploits
the local trends of the objective function using the information from the evaluated points
and results in demonstrated faster convergence.

4. Based on the sizes of boxes and the objective values obtained by minimizing the local
surrogate models using BARON, BAM identifies a list of candidate points for evaluation
at each iteration. The newly sampled points are added to the collection utilized for the
box subdivision at the next iteration.

The bibliography at the end of this document offers more details of the methodology implemented
in BAM and demonstrates the advantages of this methodology in comparison to currently utilized
approaches, including deterministic and stochastic search algorithms. BAM relies in a unique way
in advanced machine learning software (ALAMO) and advanced optimization software (BARON).
Both software are embedded in the BAM distribution. For information on the algorithms utilized
by ALAMO and BARON, see https://minlp.com.

3 Running BAM

Users can utilize BAM only from the command line. BAM reads model data and algorithmic
options from a text file in a simple format. Even though it is not required, it is strongly recom-
mended that all BAM input files have the extension ‘.bam.’ If the input file is named ‘test.bam’
and the BAM executable is named ‘bam,’ issuing the command

bam test

or

bam test.bam

results in BAM parsing test.bam and solving the problem. In addition to screen displays, BAM
can also provide results in the listing file ‘test.lst’ that is generated during the run. The .lst file
is always stored in the execute directory, even when the .bam file is in a different path. During
execution, BAM creates and utilizes a directory for storing various work files. When calling
BAM, the user may optionally include a second command line argument in order to specify
BAM’s working directory:

bam test.bam myscratchdir

https://minlp.com

BAM user manual and installation guide v. 2025.7.27 5

where ‘myscratchdir’ denotes the name of BAM’s scratch directory. If this argument is not
specified, BAM will create and utilize a directory named ‘test.bamscr’ in the execute directory.
If the scratch directory exists, it is erased in the beginning of the run. At the end of the run,
BAM will delete its scratch directory.

4 Example input file

The following file is referred to as ‘e1.bam’ and pertains to optimizing the Six-Hump Camel
function–often called camel6–a classic benchmark in nonlinear optimization, especially for testing
global optimization algorithms. The function is defined for two variables, x1 and x2, as f(x1, x2) =
(

4− 2.1x2

1
+

x
4

1

3

)

x2

1
+ x1x2 + (−4 + 4x2

2
)x2

2
. The input domain we consider is x1 ∈ [−3, 3] and

x2 ∈ [−1.5, 1.5]. The function has two global minima at approximately (−0.0898, 0.7126) and
(0.0898,−0.7126), both with a function value of approximately −1.0316.

Following the comment line that begins with an exclamation mark, the file specifies that we are
dealing with a problem with two variables (nvars = 2). The minimum and maximum allowed
values of the variables are then specified. An initial sampling data set is specified and is comprised
of a single data point (ndata = 1); the starting point we specify is the origin. The user provides
a simulator named camel6.exe that reads the values of x1 and x2 (one variable per line) from
a file named input.in, calculates the function, and returns the function value in a file named
output.out. We are willing to invest no more than 80 function calls (maxevals) to optimize this
problem.

! camel6 is a classic NLP benchmark

nvars 2

xmin -3 -1.5

xmax 3 1.5

ndata 1

BEGIN_DATA

0 0

END_DATA

dataprovider /usr/local/testlibs/dfo/all/camel6.exe

datain input.in

dataout output.out

maxevals 80

Many additional examples of BAM input files can be found at https://minlp.com/black-box-optimizati

5 Input file grammar

The following rules should be followed when preparing an BAM input file:

• The name of the input file should include its exact path location if the file is not present
in the execute directory.

https://minlp.com/black-box-optimization-test-problems

6 BAM user manual and installation guide v. 2025.7.27

• The name of the input file should not exceed 1000 characters in length.

• The input is not case sensitive.

• Most options are entered one per line, in the form of ‘keyword’ followed by ‘value’. Certain
vector options are entered in multiple lines, starting with ‘BEGIN <keyword>’, followed
by the vector input, followed by ‘END <keyword>’.

• Certain options must appear first in the input file. This requirement is discussed explicitly
in option descriptions provided below.

• With the exception of arguments involving paths, character-valued options should not
contain spaces.

• Blank lines, white space, and lines beginning with *, #, % or ! are skipped. Inline comments
that are preceded by #, % or ! are permitted in any line that contains alphanumeric options.
Blocks of comment lines are allowed using ‘BEGIN COMMENT’, followed by the block of
comment lines, followed by ‘END COMMENT’; these comment blocks are entirely ignored
by BAM.

6 BAM data and options specification statements

6.1 Required parameters

The following parameters must be specified in the input file.

Parameter Description

NVARS Number of model input variables. NVARS must be a pos-
itive integer and defines the number of optimization vari-
ables. NVARS must be provided before providing variable
bounds and starting points.

DATAPROVIDER Complete path of executable that will provide function
values at requested points. The DATAPROVIDER exe-
cutable must be capable of reading file DATAIN and writ-
ing file DATAOUT. DATAIN is provided by BAM and
contains the values of the variables, one per line, where a
function evaluation is requested. In DATAOUT, the DAT-
APROVIDER must return a single line with the value of
the function at the evaluated point. BAM will execute the
DATAPROVIDER in a scratch directory it generates dur-
ing its run; hence, the DATAPROVIDER should not rely
on any relative paths in order to access other programs or
files.

BAM user manual and installation guide v. 2025.7.27 7

6.2 Optional vector parameters

The following parameters may be specified in the input file only after NVARS has already been
specified.

Parameter Description

XMIN Row vector specifying minimum values for each of the in-
put variables. This should contain exactly NVARS entries
that are space delimited.

XMAX Row vector specifying maximum values for each of the in-
put variables. This should contain exactly NVARS entries
that are space delimited.

XISINT Row vector of 0/1 flags that specify which input variables,
if any, BAM should treat as integers. For integer inputs,
BAM’s sampling will be restricted to integer values.

XMIN and XMAX define the domain of the optimization problem. If left unspecified, XMIN
and XMAX will be initialized by BAM using BAM’s MAXBOUND parameter described below.
If left unspecified, all values of XISINT are initialized to zero.

6.3 Optional data specifications

This section describes optional parameters pertaining to the particular problem being solved.

Option Description Default

NDATA Number of unevaluated starting points specified by the
user. NDATA must be a nonnegative integer.

0

NEVALDATA Number of evaluated starting points provided by the user.
NEVALDATA must be a nonnegative integer.

0

BATCH A 0−1 indicator. If 1, BAM will propose evaluation points
and terminate the run.

0

DATAIN Name of input file for the DATAPROVIDER. BAM gen-
erates this file.

input.txt

DATAOUT Name of output file for the DATAPROVIDER. BAM ex-
pects the DATAPROVIDER to provide this file after each
call.

output.txt

MAXEVALS Maximum number of new function evaluations permitted
during this run. MAXEVALS must be at least as large as
NDATA.

2500

MAXTIME Maximum total execution time allowed in seconds. This
time includes all steps of the algorithm, including time
to read problem, preprocess data, solve optimization sub-
problems and machine learning subproblems, and print
results.

∞

8 BAM user manual and installation guide v. 2025.7.27

MAXITER Maximum number of algorithmic iterations permitted dur-
ing this run. A value of −1 implies no limit on the number
of algorithmic iterations (MAXEVALS and MAXTIME
limits apply).

−1

MAXPROFAILS Maximum number of DATAPROVIDER failures to toler-
ate before terminating. A value of −1 implies no limit on
the number of DATAPROVIDER failures.

−1

MAXBOUND Maximum absolute value allowed for variable bounds.
If lower bounds for variables are left unspecified, they
will be set equal to −MAXBOUND. If upper bounds for
variables are left unspecified, they will be set equal to
MAXBOUND. If variable bounds are specified through
XMIN and XMAX, their values will be adjusted to en-
force MAXBOUND.

10000

SAMPLER Technique to be used for space filling initial sampling. Pos-
sible values are 1 through 7, with the following meaning:

1. Latin hypercube sampling,
2. Sobol sampling,
3. Faure sampling,
4. Halton sampling,
5. Hammersley sampling,
6. Niederreiter2 sampling,
7. random sampling.

2

PRESET A value indicating that the DATAPROVIDER was not
able to compute a specific requested point. This value
must be carefully chosen to be an otherwise not realizable
value for the function at hand.

-111111.

PRINT TO FILE A 0−1 indicator. Output is directed to the listing file if
this option is set to 1; if set to 0, no output is sent to the
listing file.

1

PRINT TO SCREEN A 0−1 indicator. Output is directed to the screen if this
option is set to 1; if set to 0, no output is sent to the
screen.

1

PREVALS In addition to the listing file, BAM optionally prints a
file containing function evaluations. Each line of this file
contains an evaluation number, followed by current CPU
time, the values of the problem variables, the correspond-
ing objective function value, and the best objective func-
tion value found during the search. This file is printed
only if PREVALS is positive, in which case printing oc-
curs every PREVALS function calls.

1

The parser is not case sensitive. For example, nvars, nVARS, nVars, and NVARS are equivalent.

If the parameter NDATA is set, then a data section must follow subsequently in the input file

BAM user manual and installation guide v. 2025.7.27 9

with precisely NDATA rows, one for each starting point (NVARS space separate values for all
problem variables) specified in the following form:

BEGIN_DATA

...

END_DATA

If the parameter NEVALDATA is set, then a data section must follow subsequently in the input
file with precisely NDATA rows, one for each previously evaluated point (NVARS space sepa-
rate values for all problem variables, followed by space, followed by the corresponding objective
function value) specified in the following form:

BEGIN_EVALDATA

...

END_EVALDATA

7 BAM output

7.1 BAM screen output

The screen output below is obtained for problem e1.bam.

BAM version 2025.7.27. Built: WIN-64 Sun Jul 27 00:48:34 EDT 2025

Running on machine PONTIOS

If you use this software, please cite:

Ma, K., L. M. Rios, A. Bhosekar, N. V. Sahinidis and S. Rajagopalan,

Branch-and-Model: A derivative-free global optimization algorithm,

Computational Optimization and Applications, 85, 337-367, 2023.

BAM is powered by the ALAMO and BARON software from http://www.minlp.com/

Licensee: Nick Sahinidis at The Optimization Firm, LLC, niksah@minlp.com.

Reading input data

Checking input consistency and initializing data structures

Call Time Best function value Merit function

10 BAM user manual and installation guide v. 2025.7.27

1 0.310000E-01 0.00000 0.00000

2 0.660000E-01 0.00000 124.650

3 0.100000 0.00000 0.562500E-01

4 0.126000 0.00000 0.562500E-01

5 0.158000 0.00000 1.44272

6 0.177000 0.00000 13.5541

7 0.205000 0.00000 2.14585

8 0.236000 0.00000 8.35093

9 0.264000 0.00000 2.78074

10 0.284000 0.00000 3.00344

11 0.315000 0.00000 38.4445

12 0.331000 0.00000 0.315905

13 0.364000 0.00000 3.00344

14 0.394625 0.00000 2.78074

15 0.425625 0.00000 0.315905

16 0.456625 0.00000 38.4445

17 0.479625 0.00000 19.7398

18 0.506625 0.00000 9.58945

19 0.536625 0.00000 2.11318

20 0.567625 0.00000 0.523732

21 0.589625 0.00000 3.25023

22 0.621625 0.00000 65.7231

23 0.646625 0.00000 1.06178

24 0.678625 0.00000 0.588561

25 0.709625 0.00000 7.07076

26 0.731625 0.00000 1.87340

27 0.757625 0.00000 18.5692

28 0.788625 0.00000 3.26407

29 0.820625 0.00000 2.24336

30 0.852625 0.00000 2.66223

The software first reports the version, platform, and compilation date of the executable, followed
by credits. Then, after reading the input data, a consistency check is run on the problem data
and, if passed, the data structures are initialized. Subsequently, information is provided for
each function evaluation: the current cumulative CPU time, the current best known objective
function value for the problem, and the value of the objective function computed in the most
recent call to the DATAPROVIDER. At the end of the run, BAM provides a termination code
and explanatory message.

8 Termination conditions and error messages

Errors in the input file are reported on the screen and/or the listing file in the form of “warnings”
and “severe errors.” BAM attempts to continue execution despite warnings. If the errors are
severe, the program execution is stopped and, if relevant, the line of the input file where the fatal
error occurred is displayed. The input file should be checked even if the warnings are not severe,

BAM user manual and installation guide v. 2025.7.27 11

as the problem might have been parsed in a way other than it was intended to be. Detailed error
messages are provided in that case.

BAMmay terminate with any of the following termination codes, all of which are self-explanatory:

1. Licensing error. A valid license is required in order to run this software.

2. BAM must be called with one or two command line arguments.

3. BAM input file name bust be no longer than 1000 characters.

4. BAM input file not found.

5. BAM listing file cannot be opened.

6. Unable to open trace file.

7. Insufficient memory to allocate data structures.

8. BAM input file cannot be opened.

9. Keyword too long in input file.

10. No keyword may be specified more than once.

11. Number of variables (NVARS) must be specified before specifying XMIN values.

12. Number of variables (NVARS) must be specified before specifying XMAX values.

13. Number of variables (NVARS) must be specified before specifying XISINT.

14. END DATA missing or incomplete DATA section.

15. Number of data points (NDATA) must be specified before the DATA section of the input
file.

16. Number of variables (NVARS) must be specified before the DATA section of the input file.

17. Keyword not recognized in input file.

18. Only one DATA section is allowed.

19. Input data file missing required keyword(s).

20. At least one of DATAPROVIDER and BATCH must be specified.

21. Error while attempting to access the BAM scratch directory.

22. Error while attempting to access the BAM execution directory.

23. XMAX-XMIN for all variables must be positive.

24. XDATA must be in the range [XMIN, XMAX].

25. XEVALDATA must be in the range [XMIN, XMAX].

12 BAM user manual and installation guide v. 2025.7.27

26. Premature end of input file.

27. Each line of the input file must contain no more than 10000 characters. Longer data records
may be split into multiple lines using & at the end of a line to signify continuation of the
record in the next line.

28. Syntax error in input file.

29. Inline comments must be preceded by ! or #.

30. Solver reached limit on function calls.

31. Input value in error in input file.

32. Error while attempting to write the input file for the data provider.

33. Error while attempting to read the output file of the data provider.

34. Error while attempting to access the data provider.

35. Error while trying to copy file to disk.

36. Error while attempting to write file to disk.

37. Error while attempting to read file from disk.

38. Error while trying to run ALAMO.

39. Error while trying to run BARON.

40. Too many iterations without progress.

41. Maximum CPU time (MAXTIME) exceeded.

42. Numerical difficulties. Please report to niksah@minlp.com.

43. NEVALDATA is nonzero but XEVALDATA were not provided.

44. NDATA is nonzero but XDATA were not provided.

45. Run interrupted by user.

9 Bibliography

The following is a partial list of BAM-related publications that describe the algorithms imple-
mented in the software, the theory behind them, and some related applications.

1. S. Amaran, N. V. Sahinidis, B. Sharda and S. J. Bury. Simulation optimization: A review
of algorithms and applications. Annals of Operational Research, 240, 351-380, 2016.

2. A. Cozad, N. V. Sahinidis, and D. C. Miller. Learning surrogate models for simulation-
based optimization. AIChE Journal, 60, 2211–2227, 2014.

BAM user manual and installation guide v. 2025.7.27 13

3. A. Cozad, N. V. Sahinidis, and D. C. Miller. A combined first-principles and data-driven
approach to model building. Computers & Chemical Engineering, 73, 116–127, 2015.

4. K. Ma, L. M. Rios, A. Bhosekar, N. V. Sahinidis and S. Rajagopalan. Branch-and-
Model: A derivative-free global optimization algorithm. Computational Optimization and

Applications, 85, 337-367, 2023.

5. K. Ma, L. M. Rios, H. Zheng, N. V. Sahinidis and S. Rajagopalan. Model-and-Search:
A derivative-free local optimization algorithm. Computational Optimization And Applica-

tions,
https://doi.org/10.1007/s10589-025-00686-9.

6. N. Ploskas and N. V. Sahinidis. Review and comparison of algorithms and software for
mixed-integer derivative-free optimization. Journal of Global Optimization, 82, 433-462,
2022.

7. L. M. Rios and N. V. Sahinidis. Derivative-free optimization: A review of algorithms and
comparison of software implementations. Journal of Global Optimization, 56, 1247-1293,
2013.

8. Y. Zhang and N. V. Sahinidis. Solving continuous and discrete nonlinear programs with
BARON. Computational Optimization and Applications,
https://doi.org/10.1007/s10589-024-00633-0.

https://doi.org/10.1007/s10589-025-00686-9
https://doi.org/10.1007/s10589-024-00633-0

	BAM user manual and installation guide v. 2025.7.27
	Introduction
	Licensing and software requirements
	Installation

	Algorithms implemented
	Running BAM
	Example input file
	Input file grammar
	BAM data and options specification statements
	Required parameters
	Optional vector parameters
	Optional data specifications

	BAM output
	BAM screen output

	Termination conditions and error messages
	Bibliography

