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MINLP

• Sources of nonconvexity
– The objective/feasible space may be nonconvex
– Integrality requirements on some variables

• Assume
– 𝒇𝒇,𝒈𝒈 are recursive compositions of sums and products of univariate 

functions (exp, log, powers)
– 𝒇𝒇,𝒈𝒈 are bounded
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PRESOLVE LITERATURE

LP

• Brearly et al. (1975)
• Tomlin and Welch (1983)
• Vanderbei (1991)
• Fourer and Gay (1993)
• Andersen and Andersen 

(1995)
• Gondzio (1997)
• Ioslovich (2001)

MIP

• Johnson and Suhl (1980)
• Guignard and Spielberg 

(1981)
• Crowder et al. (1983)
• Hoffman and Padberg 

(1991)
• Savelsbergh (1994)
• Achterberg et al. (2020)

NLP/MINLP

• Papalambros and Wilde 
(1988)

• Ryoo and Sahinidis (1995)
• Shectman and Sahinidis 

(1995)
• Gould and Toint (2004)
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• Removal of empty rows 
• Removal of empty columns
• Removal of redundant rows
• Removal of fixed columns
• Crossing of bounds on rows 
• Crossing of bounds on columns
• Unboundedness

BASIC PRESOLVE

Brearley et al., 1975
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• Feasibility-based bound tightening

INFERENTIAL PRESOLVE

Brearley et al., 1975

a.

f.

b. c.

d.
e.

• Optimality-based bound tightening 

• Poor man’s LPs

; Shectman and Sahinidis, 1995; Ryoo and Sahinidis, 1995

• Poor man’s NLPs

• Probing
• Removal of singleton/doubleton rows 

and columns
• Removal of parallel rows and columns
• Removal of dominated columns
• Monotonicity-based presolve
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• Substitution
• Nonzero cancellation
• Replacing integers by binary expansions
• Complete problem reformulations, such as MIBQP to MIP
• Fourier-Motzkin elimination

REFORMULATION PRESOLVE

Potential explosion of the number of constraints
Kohler, 1967; Duffin, 1974; Williams, 1986; Huynh et al., 1992; Imbert, 1993; Kanniappan and Thangavel, 1996
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FOURIER-MOTZKIN ELIMINATION

Eliminate 𝒙𝒙𝟑𝟑

Eliminate 𝒙𝒙𝟒𝟒

Solve Postsolve
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• Monotonicity Principle 1
If 𝒇𝒇 𝒙𝒙  and 𝒈𝒈 𝒙𝒙  are nondecreasing w.r.t. 𝒙𝒙𝒊𝒊, fix 𝒙𝒙𝒊𝒊 at its 
lower bound

• Monotonicity Principle 2
For an nonobjective variable 𝒙𝒙𝒊𝒊, if all the constraints in 
𝒈𝒈 𝒙𝒙 ≤ 𝟎𝟎  are nondecreasing (nonincreasing) w.r.t. 𝒙𝒙𝒊𝒊, then 
fix 𝒙𝒙𝒊𝒊 to its lower (upper) bound

MONOTONICITY PRINCIPLES

Papalambros and Wilde, 1988; Hamed and McCormick, 1993
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• LP test set
– LP problems from Mittelmann, and Meszaros, and Netlib LP
– LP relaxations of problems from five libraries: Globallib, Princetonlib, MINLPlib, IBMlib
– After eliminating all infeasible and duplicate problems, 1713 problems are collected

• All LPs solved by CPLEX
• Presolve strategies

– Nopre: no presolve
– CPLEXpre: enable CPLEX presolve
– BARONpreX: enable BARON presolve without FME
– BARONpre: enable BARON presolve with FME 
– BCpreX: enable both BARON’s presolve without FME, followed by CPLEX’s presolve
– BCpre: enable both BARON’s presolve with FME, followed by CPLEX’s presolved

COMPUTATIONAL ASSESSMENT OF FME
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Shifted geometric means of model statistics for different presolve strategies

FME MODEL REDUCTION
Ratio of model sizes: presolved vs. original model
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Shifted geometric means of total simplex iterations for different presolve strategies

Shifted geometric means of Phase I iterations for different presolve strategies

FME IMPACT ON SIMPLEX ITERATIONS

BARON’S presolve reduces primal and dual CPLEX iterations by 3%
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FME IMPACT ON CPLEX CPU TIME

BARON’S presolve makes primal and dual CPLEX faster by 10%

Shifted geometric means of CPLEX CPU times for different presolve strategies
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REDUCTION BENEFITS

BARON

BARON-nr

SCIP

COUENNE

COUENNE-nr
SCIP-nr

1740 problems from GlobalLib, MINLPLib and PrincetonLib

Puranik and Sahinidis (2017)
Solver performance deteriorated up to 170% when reduction is turned off
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NLP TEST PROBLEM STATISTICS

Rows Cols IntroRows IntroCols Nonzeros

Percentage of linear components

Columns Rows Nonzeros

• Test set
– NLP problems from Globallib, Princetonlib, Netlib
– Root-node continuous relaxations of mixed-integer nonlinear problems (MINLP) in libraries: 

MINLPlib, MINLPlib2, IBMlib
– After filtering out problems that are duplicate, infeasible or unbounded and models for which 

bounds are not available to construct bounded factorable relaxations, 7462 problems are 
collected
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REPRESENTATIVE EXAMPLES
Problem Original model size Presolved model size Solution time (s)

m n nz m n nz Without presolve With presolve

qplib_9030 5001 10001 57982 53 121 415 > 500 5

routingdelay_proj 2978 1124 13231 1492 1086 11703 107 5

qplib_2910 380 451 1040 75 151 514 > 500 5

concbased 355 426 990 75 151 514 > 500 7

wastewater13m1 84 383 1115 54 368 1070 > 500 3

sporttournament16 1 121 314 0 120 312 > 500 34

torsion75 4 4008 47155 0 3750 34000 > 500 3

lop97icx 87 986 1946 126 219 2046 > 500 7

powerflow0014r 197 118 757 126 107 626 > 500 90

catmix800 1600 2403 14413 2328 2401 18769 > 500 97

m, n, nz: Number constraints, variables, nonzeros
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IMPACT OF PRESOLVE ON NLPs
Measures used

1. Size reduction
2. Speed-up
3. Decreased density of linear 

components
4. Higher quality of local solutions

Shifted geometric means of model statistics and solution times 
with and without presolve for 900 presolve-impacted problems

Ratio of model statistics:
presolve vs. no presolve

Percentage of linear components
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IMPACT OF PRESOLVE ON LOCAL SEARCH

CONOPT

IPOPTH SNOPT

MINOS

Shifted geometric means of 
solution times for  local solvers

Local 
solver

Solution Time (s)
Improvement 

(%)Original Presolved

CONOPT 1.6 1.4 13

IPOPTH 4.8 4.5 6

MINOS 3.6 3.1 14

SNOPT 4.3 4.0 7
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MINLP TEST PROBLEM STATISTICS

Statistics BinVars IntVars ConVars Vars Cons IntroVars IntroCons Nonzeros

Minimum 0 1 1 3 0 1 0 3

First quantile 24 30 1 76 7 41 0 884

Median 50 50 63 124 83 100 0 2077

Third quantile 90 100 124 231 157 922 0 4883

Maximum 23424 23424 107209 107223 164321 2902840 2039 2920211

BinVars, IntVars, ConVars, Vars: Number of binary, integer, continuous, all original variables;
Cons: Number of original constraints, where the objective function is not included;
IntroVars, IntroCons: Number of introduced variables and constraints to the factorable reformulation;
Nonzeros: Number of nonzero elements in the factorable reformulation.

Model statistics of 3360 MINLP problems from 3802 problems in minlp.com
- Dropped 442 problems for which BARON and BARONnopre both timeout in 500 s or both finish within 1 s
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IMPACT OF PRESOLVE ON MINLPs

15% problems are at least 2 times faster

19 s
24 s

20% speed-up
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THE BARON PROJECT

• Branch-and-reduce algorithm and BARON software
• First publicly available software to offer deterministic guarantee of global 

optimality for mixed-integer nonlinear optimization problems
• Two-pronged approach to technology transfer

– Commercial
• Under the modeling languages GAMS, AIMMS, BARON, AMPL, MATLAB, YALMIP, 

Pyomo, JuMP
– Free

• Under the NEOS server for optimization
• Over 500,000 problems solved on NEOS

GAMS

AMPL
JuMP

Ryoo and S (1995, 1996), Tawarmalani and S (2002, 2004), Bao et al. (2009, 2015), Zorn and S (2013, 2014), Khajavirad and S 
(2012, 2013, 2018), Puranik and S (2017), Kılınç and S (2018), Zhou et al. (2018), Nohra et al. (2018, 2021, 2022)
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HISTORIC BENCHMARK

3x more problems

20x faster

1

10

100

1000

10000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

% of problems solved/failed and geometric mean times

Solved Failed Time

Mittelmann MINLP test set
– 87 problems
– Statistics (min, max, avg)

• Variables: 6, 107222, 2334
• Binaries: 0, 3000, 111
• Integers: 0, 100, 12
• Constraints: 0, 108217, 2626

Runs under GAMS
– CPLEX, CBC
– MINOS, CONOPT, IPOPT, 

SNOPT, FilterSQP

64-bit Xeon X5650 2.66GHz
– 3600 s 0

50,000
100,000
150,000
200,000
250,000
300,000

Lines of BARON code

GAMS C Fortran
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Collection 
• 3802 MINLPs from minlp.com
• Drop problems for which all solvers timeout 

in 500 s or all solvers finish in 1 s

STATE-OF-THE-ART GLOBAL MINLP SOLVERS
– 2968 problems
– Statistics (min, max, avg)

• Variables: 3, 107223, 421
• Binaries: 0, 8904, 115
• Integers: 1, 10000, 123
• Constraints: 0, 164300, 768

19 s

33 s

53 s

158 s

36 s

Based on primal bounds
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