

Recent progress in the global optimization of NLPs and MINLPs with BARON

Nick Sahinidis

Georgia Institute of Technology, https://sahinidis.coe.gatech.edu/

Acknowledgements:

Anatoliy Kuznetsov, Georgia Institute of Technology
Yi Zhang, The Optimization Firm, LLC, https://minlp.com/

BARON HISTORY

First generation

1991-1993

Duality-based range reduction Constraint propagation 1994-1995

Branch-and-bound system

Finite algorithm for separable concave minimization

1996-1997

Parser for factorable programs

Nonlinear relaxations

Links to MINOS and OSL

Second generation

2005-2007

Local search

Memory management, ...

Third generation

2004

Branch-and-cut

Under AIMMS

2002

Under GAMS

1998-2001

Polyhedral relaxations

Link to CPLEX

Compressed data storage

Tree traversal, ...

2008-2012

Multi-term envelopes

Multi-variate and multi-constraint

envelopes/relaxations

2013-2016

Links to CLP and IPOPT

Hybrid LP/NLP/MIP relaxations

Under MATLAB, YALMIP, AMPL, Pyomo and JuMP

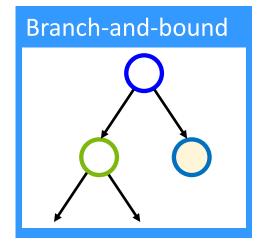
2017-

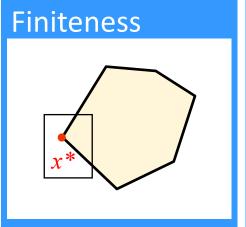
NLP and MINLP Presolve

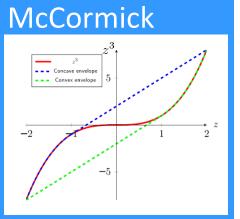
Optimality based reduction

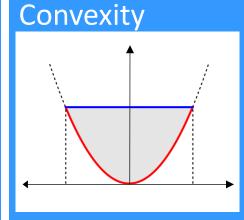
Eigenvalue relaxations, ...

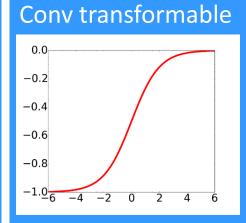
STATUS OF THE BARON PROJECT

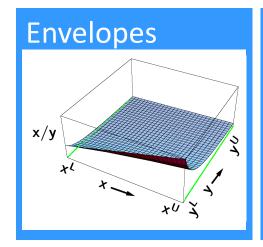

- Branch-and-reduce algorithm and BARON software
- First publicly available software to offer deterministic guarantee of global optimality for mixed-integer nonlinear optimization problems
- Two-pronged approach to technology transfer
 - Commercial
 - Under the modeling languages GAMS, AIMMS, BARON, AMPL, MATLAB, YALMIP, Pyomo, JuMP
 - Free
 - UIUC, CMU, GT
 - Under the NEOS server for optimization

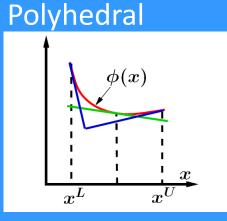


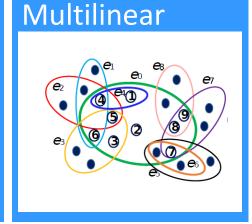

BARON USERS

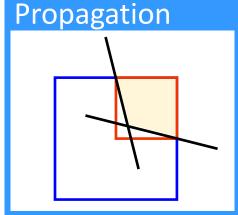


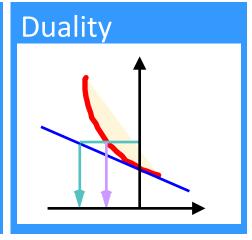

ALGORITHMIC COMPONENTS











Ryoo and S (1995, 1996), Tawarmalani and S (2002, 2004), Bao et al. (2009, 2015), Zorn and S (2013, 2014), Khajavirad and S (2012, 2013, 2018), Puranik and S (2017), Kılınç and S (2018), Zhou et al. (2018), Nohra et al. (2018, 2021, 2022); Zhang et al. (2024+)

RECENT ADVANCES IN BARON

Presolve

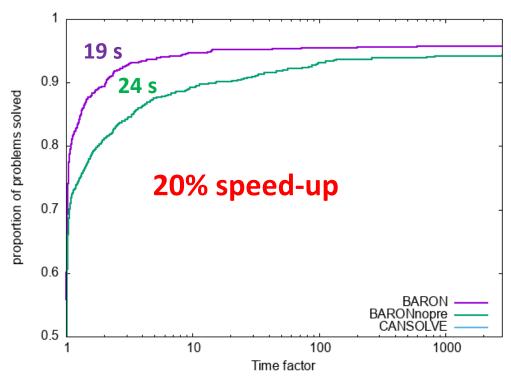
- Fourier-Motzkin elimination (Zhang et al., under review)
- Combined LP/NLP/integer presolve (Zhang et al., under review)
- Reformulations

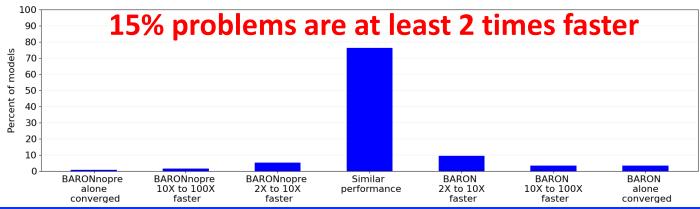
Convexification

- Enhanced identification of convex/concave expressions
- Simultaneous convexification

Hyrbid relaxations

LP, NLP, MILP, QP, QCP, piecewise-linear relaxations


Software engineering

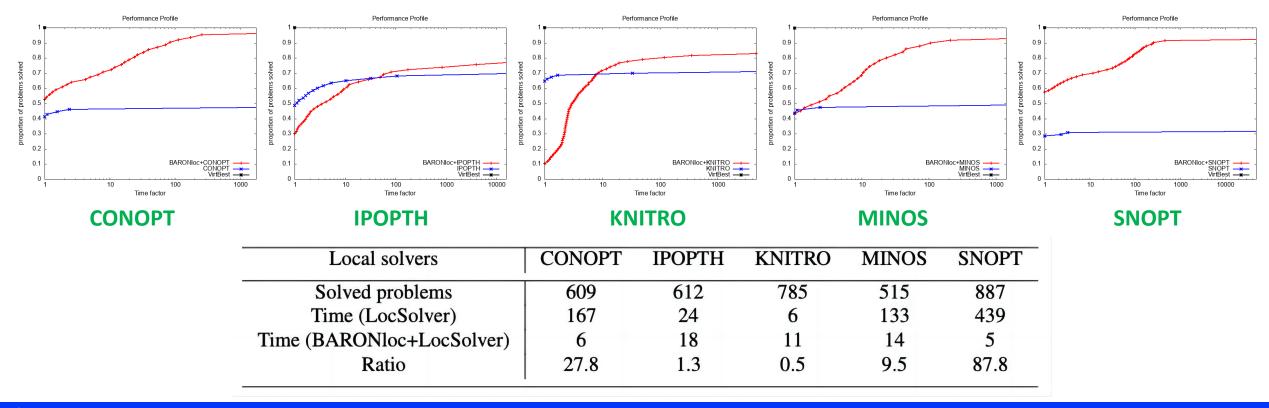

Range reduction routines

Performance variability of subsolvers

- Safeguarding against unsafe and incorrect solutions from subsolvers
- Learning to exploit variations among subsolvers

IMPACT OF PRESOLVE ON MINLPs

IMPACT OF PRESOLVE ON MINLPS


Group of problems		All	$\geq 0 \text{ s}$	≥ 1 s	Solved ≥ 10 s	d ≥ 100 s	≥ 500 s	Time-out	
Number of Models		1502	1080	787	659	558	510	422	
BARON default	Tlimit Time (s) Nodes	455 98 107	33 18 38	33 30 70	33 40 80	33 48 80	33 49 82	NoSol Gap ^{0.1} Gap ^{0.01}	55 72 41
No presolve	Tlimit MWorse Worse Better MBetter Time (s) Nodes	852 683 101 59 164 400 3486	430 683 101 59 164 165 2502	430 588 48 25 102 496 15372	430 540 30 12 65 1027 45246	430 484 17 6 41 1946 121518	430 452 14 4 35 2415 195484	NoSol MWorse Worse Better MBetter Gap ^{0.1} Gap ^{0.01}	66 169 58 13 52 33 16
Impact (%)	Tlimit Time (s) Nodes	47 76 97	92 89 98	92 94 100	92 96 100	92 98 100	92 98 100	NoSol Gap ^{0.1} Gap ^{0.01}	17 118 156

Note:

- '>= n s': a bracket collecting examples that at least one solver can solver but the slower solver costs at least n seconds
- Tlimit: number of time-out cases in each group
- Time and Nodes: shifted geometric means (shift = 10) for the solution time and number of nodes for each group
- Gap^{0.01}: number of time-out problems that converge to an (absolute or relative) optimality gap within 1%
- Gap^{0.1}: number of time-out problems that converge to an (absolute or relative) optimality gap between 1 and 10%
- MWorse = much worse; MBetter = much better; NoSol = not solved

SPEEDING UP LOCAL NLP CODES

- BARONloc: a local version of BARON that terminates once the first local solution is found
- BARONloc+X: BARONloc equipped with only local subsolver X

MITTELMANN MINLP BENCHMARK

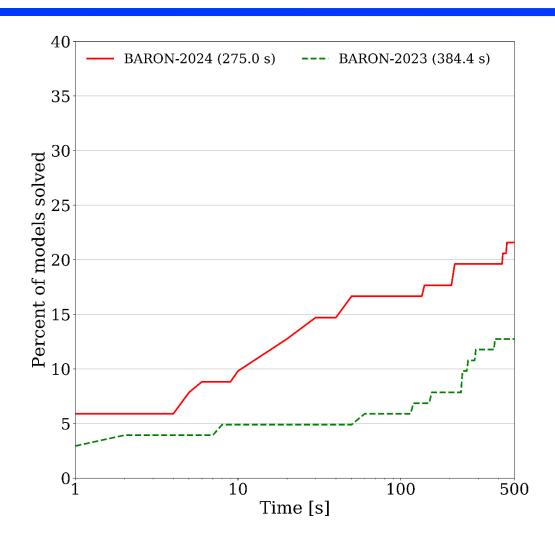
Mittelmann MINLP test set

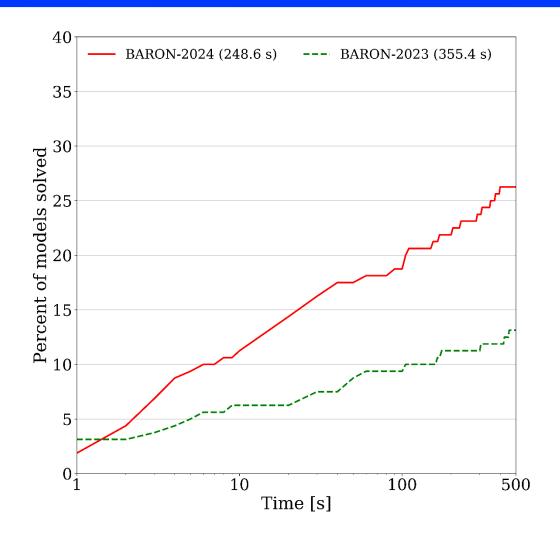
- 87 problems
- Statistics (min, max, avg)
 - Variables: 6, 107222, 2334
 - Binaries: 0, 3000, 111
 - Integers: 0, 100, 12
 - Constraints: 0, 108217, 2626

Runs under GAMS

- CPLEX, CBC
- MINOS, CONOPT, IPOPT, SNOPT, FilterSQP

64-bit Xeon X5650 2.66GHz

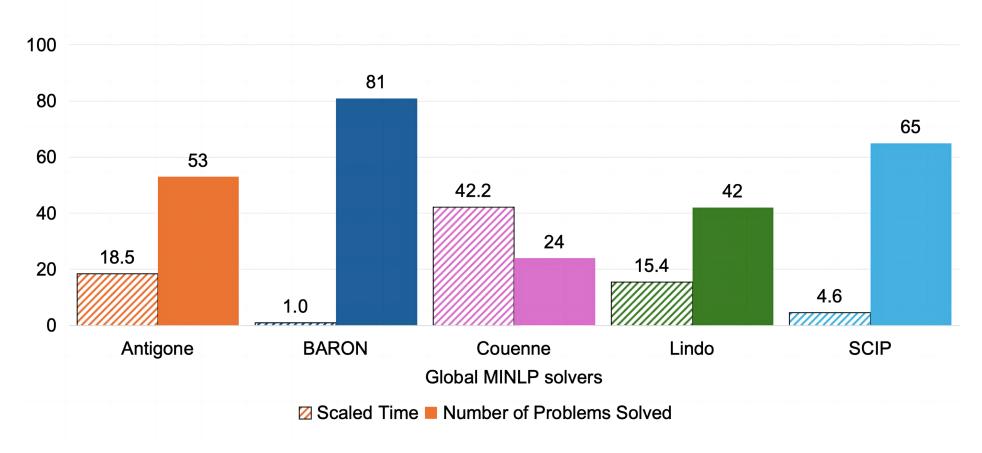

- 3 hours
- Single thread



3x more problems

40x faster

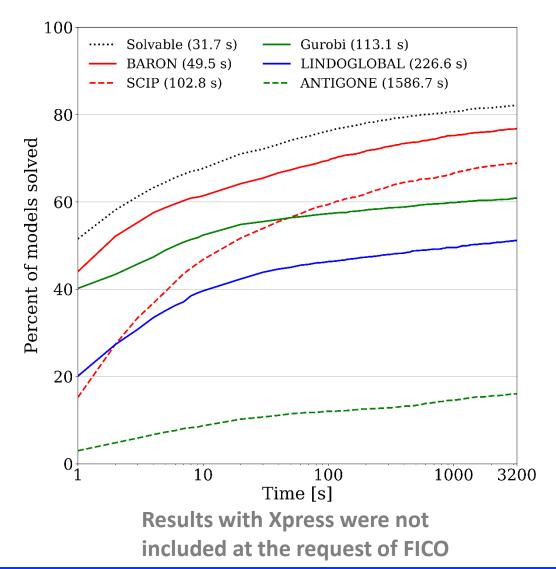
MITTELMANN NONCONVEX QCQP BENCHMARK



Discrete

Continuous

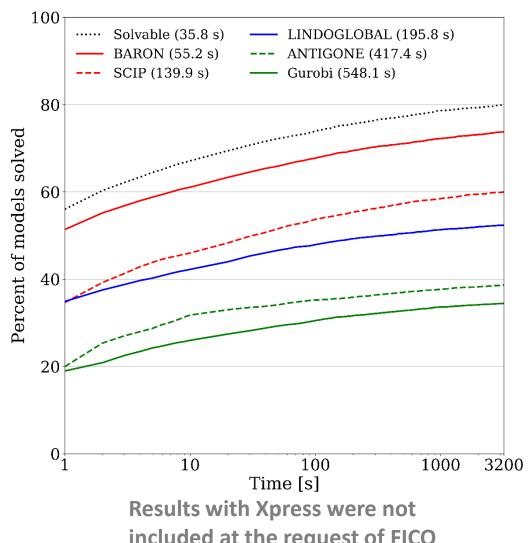
GLOBAL MINLP SOLVERS ON MITTELMANN BENCHMARK



Source of data: Mittelmann, H. (2024, June 8). Mixed Integer Nonlinear Programming Benchmark (MINLPLIB) [Dataset]. Arizona State University. https://plato.asu.edu/ftp/minlp.html.

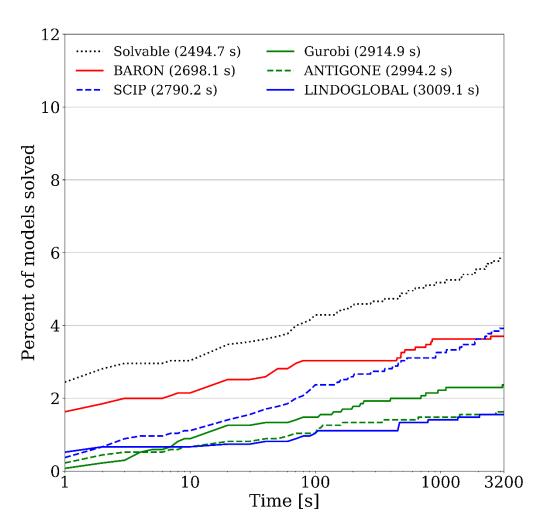
STATE-OF-THE-ART GLOBAL MINLP SOLVERS

- 3,875 instances
- Average size:
 - 784 variables
 - 208 integer variables
 - 1,241 constraints
- Single core under GAMS/Examiner
- 82% solvable by any solver within one hour
- Solvable instance size averages:
 - 424 variables
 - 98 integer variables
 - 594 constraints
- https://minlp.com/optimizationtest-problems/


3,875 MINLPs from minlp.com

STATE-OF-THE-ART GLOBAL NLP SOLVERS

- 7,787 instances
- Average size:
 - 773 variables
 - 914 constraints
- Single core under GAMS/Examiner
- 80% solvable by any solver within one hour
- Solvable instance size averages:
 - 587 variables
 - 627 constraints
- https://minlp.com/optimizationtest-problems/


7,787 NLPs from minlp.com

included at the request of FICO

EuclidLib

- 1,352 instances
- Average size:
 - 6,205 variables
 - **11,718 constraints**
- Single core under GAMS/Examiner
- 5.8% solvable by any solver within one hour
- Solvable instance average size:
 - 39 variables
 - 448 constraints
- https://github.com/anatoliykuznetsov/EuclidLib

Results with Xpress were not included at the request of FICO